

Project Document Cover Sheet

Project Information

Project Acronym I2S2

Project Title Infrastructure for Integration in Structural Sciences

Start Date 1
st
 Oct 2009 End Date 31

st
 March 2011

Lead Institution Universities of Bath and Southampton

Project Director Liz Lyon (UKOLN)

Project Manager &

contact details

Manjula Patel

01225 386547; m.patel@ukoln.ac.uk

Partner Institutions Universities of Bath, Southampton, Cambridge; STFC; Charles

Beagrie Ltd.

Project Web URL http://www.ukoln.ac.uk/projects/I2S2/

Programme Name

(and number)

Managing Research Data (Research Data Management

Infrastructure)

Programme Manager Simon Hodson

Document Name

Document Title Pilot Implementation

Reporting Period N/A

Author(s) & project

role

Erica Yang, Brian Matthews (STFC Rutherford Appleton

Laboratory)

Date 31
st
 March 2011 Filename I2S2-WP3-D3.3b-

PilotImplementation.doc

URL

Access Public x General dissemination

 2

D3.3 Pilot Implementation

Work Package 3

April 2010 – March 2010

JISC I2S2 Project

Document Details
Author: Erica Yang, Brian Matthews (STFC

Rutherford Appleton Laboratory)

Date: 31
st
 March. 2011

Version: 0.4

File Name: I2S2-WP3-D3.3.-

PilotImplementation.doc

Notes:

This work is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.5 UK: Scotland

Licence.

http://creativecommons.org/licenses/by-nc-sa/2.5/scotland/
http://creativecommons.org/licenses/by-nc-sa/2.5/scotland/

 3

Acknowledgements

The Infrastructure for Integration in Structural Sciences (I2S2) Project is funded by the UK’s Joint

Information Systems Committee (JISC); the project manager is Simon Hodson. The I2S2 project

team comprises:

- Liz Lyon (UKOLN, University of Bath & Digital Curation Centre)

- Manjula Patel (UKOLN, University of Bath & Digital Curation Centre)

- Simon Coles (EPSRC National Crystallography Centre, University of Southampton)

- Martin Dove (Earth Sciences, University of Cambridge)

- Peter Murray-Rust (Chemistry, University of Cambridge)

- Brian Matthews (Science & Technology Facilities Council)

- Erica Yang (Science & Technology Facilities Council)

- Juan Bicarregui (Science & Technology Facilities Council)

- Neil Beagrie (Charles Beagrie Ltd.)

The authors would like particularly like to thank Prof Martin Dove from Earth Sciences at the

University of Cambridge, Simon Coles from the UK National Crystallography Service, and Dr. Alan

Soper and Dr. Matt Tucker from STFC ISIS facility for providing case studies of the scientific process

on STFC facilities .

A shorter version of this report has been published at the IEEE e-Science conference 2010, Brisbane,

Australia [23]. A version without appendices has been submitted for publication in Future

Generation Computer Systems.

 4

Executive Summary

The Infrastructure for Integration in Structural Sciences (I2S2) Project is funded under the Research

Data Management Infrastructure strand of the JISC's Managing Research Data Programme, with

duration of 18 months (Oct 2009 to March 2011).

One of the main aims of the project is to investigate the research and data management infrastructure

needs of researchers in the Structural Sciences (incorporating a number of disciplines including

Chemistry, Physics, Materials, Earth, Life, Medical, Engineering, and Technology). We define

research infrastructure to encompass physical, informational and human resources essential for

researchers to undertake high-quality research, including: tools, instrumentation, computer systems

and platforms, software, communication networks, technical support (both human and automated);

documentation and metadata.

This deliverable describes the pilot implementation of the I2S2 project.

Document Revision History

Version Date Comments

0.1 15
th

 October 2010 Scope and initial outline

0.2 18
th

 October 2010 Added data ingestion XML schema, XML example, MySQL database

schema

0.3 20
th

 October 2010 Added browser interface, final remarks

0.4 23
th

 March 2011 Revisit and revise

1.0 6
th

 April 2011 Final release

Contents

1 Introduction 6

2 Core Scientific MetaData model 7

3 Derived Data in the Analysis Process 10
3.1 Background . 10
3.2 Data Analysis . 11

3.2.1 Data reduction . 12
3.2.2 Initial structural model generation . 12
3.2.3 Model fitting . 12

3.3 Discussion . 13

4 An Enhanced CSMD 13
4.1 Adding a SoftwareExecution Investigation Type 15
4.2 Linking Software to SoftwareExecution . 16
4.3 Linking SoftwareExecutions to Datasets . 17
4.4 Associating parameters with a SoftwareExecution 17
4.5 Re-introducing Study and Nested Study . 17
4.6 Observation . 18

5 ICAT-personal: A Pilot Implementation 18
5.1 System Architecture . 18
5.2 Derived Data Management . 20

5.2.1 Data ingestion . 20
5.2.2 Data Browsing . 22
5.2.3 Data Restoration . 22

6 Discussion and Future Work 24

7 Final Remarks 26
7.1 Stakeholder Engagement . 26
7.2 Stakeholder Feedbacks . 26

5

1 Introduction

Increasing quantities of the raw experimental data generated using large scientific facilities,
such as large-scale photon and neutron sources, are being made available in a systematic
and secure way. This data is intended for three main users: the experimental scientists who
undertook the study need access to the raw data from their universities in order to analyse it
further; the facilities managers need access to data to manage the use of their facilities; and
other scientists may be able to access the data for re-analysis, either to verify the published
results, or to derive new scientific results without the cost of repeating the original experiment,
possibly in combination with results from elsewhere.

The Core Scientific MetaData model (CSMD) [20, 10] has been designed to capture in-
formation about experiments and the data they produce in what are broadly known as the
“structural sciences”, such as chemistry or earth science, which consider the molecular struc-
ture of matter. It is used by the data cataloguing system ICAT [5] which is used by the ISIS
neutron source1 and the Diamond Light Source (DLS)2, both operated at the Harwell Science
and Innovation Campus in the UK. The DLS synchrotron generates brilliant beams of light,
from infra-red to X-rays, which are used in a wide range of applications, from structural
biology through fundamental physics and chemistry to cultural heritage. The ISIS source
generates beams of neutrons and muons used to investigate the properties of materials at
the scale of atoms for research into subjects ranging from clean energy and the environment,
pharmaceuticals and health care, through to nanotechnology, materials engineering and IT.
The two target stations of the ISIS neutron source host 30 beamlines with their associated
instruments, while DLS currently hosts 13 instruments on separate beamlines. The use of
these facilities is not limited to a small coterie of specialists, but between them these in-
struments are used by many thousands of experimental scientists each year from around the
world. As similar large facilities are developed in other countries the data sets they create
are becoming more common, and it becomes more urgent to capture that data, and to ensure
that all stages of its analysis are accurately recorded. Consequently, facilities such as the In-
stitut Laue-Langevin (ILL)3 are also adopting the ICAT infrastructure, and the PANDATA
initiative4 is developing best practice in data management across facilities internationally.

Data cataloguing systems support access to scientific data, but the present ICAT only
catalogues the raw data produced by the facility, while derived data is managed locally by
the scientist carrying out the analysis at the facility or in their home institution. This is on
an ad hoc basis, and these intermediary derived data sets are not archived for other purposes.
Thus the support for the intended users is partial.

In order to improve the support offered by the facilities data management tool such as
ICAT, its underlying data model, CSMD needs to be extended. Currently, it does not support
access to the derived data produced during analysis, nor does it allow the provenance of data
supporting the final publication to be traced through the stages of analysis to the raw data.

Bioscientists have used workflow tools to capture and automate the flow of analyses and
the production of derived data for many years [14] and can now automatically run many
computational workflows [24]. In other structural sciences, such as chemistry and Earth
sciences, the management of derived data is less mature, workflows are not standardised and

1http://www.isis.stfc.ac.uk
2http://www.diamond.ac.uk
3http://www.ill.eu
4PANDATA Photon and Neutron Data Infrastructure. http://www.pan-data.eu/Main Page

6

can less readily be automatically enacted. Rather the data needs to be captured as the analysis
proceeds so that scientists do not lose track of what has been done. A data management
solution is required to capture the data trails that are generated during analysis, with the
aim of making the methodologies used by one group of researchers available to others.

Further, the accurate recording of the process so that results can be replicated is essential
to the scientific method. However, when data are collected from large facilities, the expense
of operating the facility means that the raw data collection effectively cannot be repeated.
Therefore tests to replicate results has to come from re-analysis of raw data as much as
repetition of the data capture in experiments.

In order to provide support for the analysis undertaken by the experimental scientists; to
permit the tracing of the provenance of published data; and to allow access to derived data
for secondary analysis, it is necessary to extend the CSMD to account for derived data and
to record the analysis process sufficiently for the needs of each of these use cases. In terms
of data provenance [8], the current CSMD approach identifies the source provenance of the
resultant data product, but it needs to be extended to describe the transformation provenance
as well.

In this report, after a summary of the existing CSMD, an example scientific process will
be described to motivate the extensions to the CSMD. Section 4 will then detail extensions
to the CSMD to meet these requirements, which are incorporated into the I2S2 Information
Model, before a pilot implementation of the extended CSMD is described using the ICAT data
catalogue system. Finally the limitations of the proposed extensions, practical limitations on
the adoption of the data catalogue system and future work will be considered.

In appendices, we give details of the tools and technologies required to support the ICAT-
Personal system.

2 Core Scientific MetaData model

The Core Scientific MetaData model (CSMD) [20] is an extensible model of metadata orig-
inally designed to capture a common set of information about the data produced by exper-
iments, measurements, and simulations in facilities science. The model is the result of an
analysis of science practice over a number of years and a range of projects, and has proved a
robust system.

CSMD was developed primarily to allow facility operators, such as STFC, to introduce
a systematic approach to manage their data assets across the heterogeneous scientific facil-
ities. Although operators may produce data files of different formats and content resulting
from different equipment, experiments, or disciplines, there are commonalities features of the
context of the data that can be captured. They include:

1. the description of the data production process (e.g. where/when/by who/how);

2. the format, type, owner, and identifier of the data;

3. the parameters in which the data should be interpreted;

4. the relationships between data.

Having a standardised metadata model underpinning the data management infrastructure
that an operator uses, supports a common strategy towards maintaining, searching, and dis-
covering data assets, reducing the overall operating cost. This is important to both facility

7

1. Core

2. Security

1.1 Datafile

1.2 Dataset

1.3 Investigation

1.5 SoftwareVersion

1.6 Parameter

1.4 Investigator

2.2 ICAT_Authorisation

2.1 User_role

1.7 Study

1.8 StudyManager

CSMD

2. Security

3. Communication

5. Search

6. Facility

7. Auxiliary

information

4. Miscellaneous

5.2 Topic

5.1 Keyword

3.1 Publication

2.2 ICAT_Authorisation

2.4 Application

2.3 ICAT_Role

4.1 This_ICAT

6.1 Shift

6.2 Instrument

6.3 Facility_instrument_scientist

6.5 Facility_user

7.2 Sample

7.1 Status

6.4 Facility_cycle

7.3 Format

7.4 Type

Figure 1: A classification of the concepts in CSMD

providers who host a wide range of scientific facilities and to users who utilize multiple facil-
ities. Metadata are also crucial for scientists other than the ones who design the equipment
or run the experiment, to interpret, understand and make use of the data.

The model as it currently stands aims to describe the physical raw data files (binary,
images, or text containing numeric values) produced by the data acquisition software of a
detector within an instrument. These files have formats which depends on the equipment,
the facility, or the program that the data is produced from. The Network Common Data
Format (netCDF) [17] and Hierarchical Data Format (HDF) [6] are well defined formats used
by many laboratories, while NeXus [9], derived from HDF5, is a common data format tar-
getted at neutron, X-ray, and muon sciences which several facilities have adopted to different
degrees: not all the data files produced within these communities use this format since many
instruments still produce older non-standard formats.

In CSMD data files are grouped into datasets, where a dataset is an abstract notion
referring to a set of related data files. How the files are related is determined by the context.
For example, if an experiment produces 10 files in a run, which is repeated 100 times in
different temperatures, 100 datasets can be created, each with the 10 files produced under a
specific temperature. This dataset concept is essential for experiments that produce a large
number of files in each run.

Datasets are then grouped into investigations, where an investigation - which can be an
experiment, a set of measurements, or a simulation - is defined as a data generation activity.
For example an investigation may represent a particular allocation of time on an instrument
to a scientist for the analysis of a sample of a material, which may generate a number of
data sets each collected at a different experimental parameter setting. Like the dataset,
an investigation is not a concept referring to an object of physical presence, but rather an
abstract notion referring to a set of related datasets generated from the same data generation
activity.

Investigations are further grouped into studies, where a study is also an abstract notion

8

referring to a set of related investigations, in other words, a set of related data generation
activities. For example, two investigations, an experiment on a sample and a related computer
simulation of the experiment, could be grouped together to form a study of the sample.

The CSMD has been implemented and deployed in STFC to support scientific data cata-
loguing and management for its major international facilities. The current production imple-
mentation of CSMD, ICAT 3.35, is based on the CCLRC Scientific Metadata Model v2 [20]
with extensions. This model forms the core of the ICAT infrastructure to catalogue, manage
and distribute data for facilities users.

Although CSMD was originally intended to accommodate data collection and processing a
much wider context of scientific studies from raw data collection to downstream data analysis,
it is currently only being used to support raw data cataloging. In order to focus on the key
data management issues throughout the data production pipeline and to clarify the extensions
needed for derived data, we identify the core and optional concepts in the model. The concepts
in CSMD can be classified into six categories (see Figure 1):

Core The concepts which are central to scientific data management. Capturing the data
outputs involve four data objects: datafile, dataset, investigation, and study. A datafile corre-
sponds to a physical data object that is stored on physical storage disks, while datasets, inves-
tigations, and studies are abstract data objects that encapsulate other (physical or abstract)
data objects as described above. Other core concepts include the Investigator and Study-
Manager, representing people associated with an investigation and a study, respectively. The
Process concept6 captures an activity that produces or consumes data objects, while the Pa-
rameter concept captures some value which provides context to the data production process,
such as environmental characteristics, instrument settings, or measured quantities.

Search Classifiers which can be assigned to data to facilitate the search and discovery of
core concepts.

Communication Concepts which link between data and other research outputs so that the
provenance of a research publication can be traced back to the data holdings.

Security Concepts which are used to enforce access control policies on the data holdings.
These may vary according to the security context of the facility.

Miscellaneous Meta-entities which identify the specific instance of ICAT metadata cata-
logue.

Facility Concepts related to facilities are introduced to capture the contextual information
associated with the (raw) data collection process, such as which facility and instrument was
used, which cycle, shift or run of the facility, the instrument-scientist (a specialised role
in a large-scale facility) was involved, additional safety information. These concepts are
specialised to facility usage, although there are analogues in other experimental contexts,
such as university laboratory experiments.

5http://code.google.com/p/icatproject/
6In CSMD 2.0 and ICAT 3.3, the concept Process is called SoftwareVersion.

9

Auxiliary Information Specific information associated with data holdings. It is currently
being used to store information related to raw data files, such as the sample under analysis,
further parameters (e.g. temperature, humidity), and file format. But it should be possible
to extend or adapt these concepts to store any information related to data holdings produced
along data analysis pipelines.

Two types of information are left out from Figure 1: links between the concepts within
a category; and those between the concepts across categories. We address the former in the
rest of this report. The latter does not directly relate to the report, and we shall not expand
on this aspect further.

3 Derived Data in the Analysis Process

In this section we study in detail an example data analysis pipeline from the raw data gathered
at a facility to the final scientific findings suitable for publication.

Along the pipeline, three concepts, raw, derived, and resultant data, are often used to
differentiate the roles of data in different stages of the analysis and to capture the temporal
nature of the processes involved. Raw data are the data acquired directly from the instrument
hosted by an facility, in the format support by the detector. Derived data are the result of
processing (raw or derived) data by one or more computer programs. Resultant data are the
final findings of an analysis, for example, the structure and dynamics of a new material being
studied in an experiment.

3.1 Background

We initially performed a desk study of three experiments involving two different types of
facilities: neutron and synchrotron facilities, in the UK. One experiment is in the domain
of Chemistry using the Diamond synchrotron and the UK National Crystallography Service
(NCS) [4] to determine the structure of atoms in solids using X-ray diffraction. The other two
experiments aim to determine the structure of atoms of matters (e.g. liquids or solids) using
neutron techniques: one uses the neutron diffraction7 provided by the GEM instrument8

and the other small angle neutron scattering9 offered by the Sandals instrument10. Both
instruments are located at the ISIS neutron spallation source.

The NCS analysis workflow is the most prescriptive among the three experiments because
the processes involved are standard and the data formats used are well established [4]. The
analysis workflows for the other two experiments are more complicated but the nature of the
analysis is similar and both workflows involve

• computationally intensive programs, and

• intensive human oriented activities that demand significant experience and knowledge
to direct the programs.

In practice, it can take months from the point that a scientist collects the raw data to the
point where the resultant data are obtained. Both workflows overlap in their data correction

7http://www.isis.stfc.ac.uk/instruments/neutron-diffraction2593.html
8http://www.isis.stfc.ac.uk/instruments/gem/gem2467.html
9http://www.isis.stfc.ac.uk/instruments/small-angle-scattering2573.html

10http://www.isis.stfc.ac.uk/instruments/sandals/sandals6929.html

10

http://www.isis.stfc.ac.uk/instruments/neutron-diffraction2593.html
http://www.isis.stfc.ac.uk/instruments/gem/gem2467.html
http://www.isis.stfc.ac.uk/instruments/small-angle-scattering2573.html
http://www.isis.stfc.ac.uk/instruments/sandals/sandals6929.html

Resultant Data

Correction

Data
Sample Data Calibration Data

Profile

parameters

Background

parameters

(Initial)

Structure file

Initial configuration

Computed

functions

XML and XHTML

result files

Resultant

configurations

Raw Data

data2config

GSAS

inputs

inputs

Control fileinputs

Control fileinputs

Pair distribution

function

MCGR or STOG

Control fileinputs

Scattering function

ArialGudrun

Diffraction pattern

RMCProfile

Raw

data

Derived

data

Resultant

data

Figure 2: The RMC data analysis flow diagram

process as they use the same set of programs to correct the raw data obtained from the
instruments (e.g. to identify the data resulting from malfunctioning detectors), though this
represents only a small part of the respective workflow.

Given these similarities we shall focus on the details of the data analysis flow of the neutron
scattering experiment using the GEM instrument to study derived data problem, although
hierarchical task anlaysis [19] has been applied to all the studies and the abstractions do
generalise across instruments, techniques, programmes and disciplines.

3.2 Data Analysis

Data analysis is the crucial step transforming raw data into research findings. In a neutron
experiment, the objective of the analysis is to determine the structure or dynamics of materials
under controlled conditions of temperature and pressure. Figure 2 illustrates a typical flow for
analysing raw data generated from the GEM instrument using Reverse Monte Carlo (RMC)
based modelling [22]. The RMC method is probabilistic, which means that a) it can only
deliver an approximated answer and b) in theory, there is always scope to improve the results
obtained earlier using the same method.

In the figure, rectangles represent the programs used for the analysis; rounded rectangles
without shadow represent the data files generated by computer programs; rounded rectangles
with shadow represent data files hand-written by scientists as inputs to the programs; ovals
represent human inputs from scientists to drive the programs; solid lined arrows represent the
information flow from files to programs, from programs to files, or from human to programs;
and the dashed lined arrows are included to highlight the human oriented nature of these
programs demanding significant expertise. This is an iterative process that takes considerable
human effort.

11

3.2.1 Data reduction

Three types of raw data are input into the data analysis pipeline: sample, correction, and
calibration data. They are first subject to a data reduction process which is facilitated by
two programs: Gudrun, a Fortran program with a Java GUI, and Arial, a IDL program. The
outputs from Gudrun11 are a set of scattering functions, one for each bank of detectors. For
Arial12, the outputs are a set of diffraction patterns, again, one per bank of detectors.

With Gudrun, the human has to subtract any noise in the data going from scattering
function to pair distribution function (through the MCGR or STOG program). Noise can arise
from several sources, e.g. errors in the program, or noise due to the statistics on the data.
In other words, when the other programs use the derived data generated by Gudrun, human
expertise is required to steer the way the data is used.

3.2.2 Initial structural model generation

The next step is the process of generating the initial configuration of the structure model
that will be used as the input to the rest of the RMC workflow. This step requires three
programs (i.e. GSAS, MCGR or STOG, and data2config) to transform the reduced data into
structure models that best fit the experimental data. To do this requires determining the
structural parameters (e.g. atom positions), illustrated as the sets of data files under GSAS,
for all the crystalline phases present, which are: profile parameters, background parameters,
and (initial) structure file.

Most neutron and synchrotron experiments use the Rietveld regression analysis method to
refine crystal structures. Rietveld analysis, implemented in GSAS, is performed to determine
the structural parameters as well as to fit the crystal structure to the diffraction patterns
using regression methods. Like all regression methods, it needs to be steered to prevent it
following a byway. Some values in the pair distribution functions produced from MCGR or
STOG are compared with their counterparts in the scattering functions to ensure that they are
consistent. If they are not, the scientist repeats the analysis.

The data2config program takes the configurations generated from GSAS, or from crystal
structure databases to determine the configuration size of the initial structure model.

3.2.3 Model fitting

All the derived data generated up to this point represents an initial configuration of the atoms,
random or crystalline, which is fed into the RMCProfile [21] program implementing the RMC
method to refine models of matter that are mostly consistent with experimental data. It is
the final step in the analysis process to search for a set of parameters that can best describe
experimental data given a defined scope of the search space and computational capacity. This
is a compute-intensive activity which is likely to take several days of computer time. It is
also a human-oriented activity because human inputs are required to “steer” the refinement
of the model.

11http://www.isis.rl.ac.uk/disordered/Manuals/gudrun/gudrun_GEM.htm
12http://www.isis.stfc.ac.uk/instruments/osiris/data-analysis/ariel-manual9033.pdf

12

http://www.isis.rl.ac.uk/disordered/Manuals/gudrun/gudrun_GEM.htm
http://www.isis.stfc.ac.uk/instruments/osiris/data-analysis/ariel-manual9033.pdf

3.3 Discussion

The scientific process under consideration passes through the main phases of sample prepa-
ration, raw data collection, data analysis and result gathering. The overall data analysis
process described above passes through the three phases of data reduction, initial structural
model generation, and model fitting. This hierarchical structure is common to the different
processes analysed. However, as the detailed example above illustrates, within each of these
phases there are many different programs involved (with potentially different versions), with
varying numbers of input and output objects. Because the analysis method is probabilistic,
there is always scope for further improvements to the results so variations on the analysis can
always be undertaken.

Throughout the analysis, many of the intermediate results are useful both for the scientists
who perform the original experiment and others in the scientific community. The investigators
or others can, for example: use them for reference; revisit them when better resources (more
powerful computers, better analysis methods or better programs) are available; and revise
them when better knowledge about the program behaviours are available.

The scientists consulted are thus not only motivated to publish their final results but
also the raw and derived data generated along the analysis flow. This is especially true for
new analysis methodologies, such as the RMC method described in this paper which is a
relatively new method in the neutron scattering community which those who use it wish to
have accepted more widely. In this case, scientists are highly motivated to publish the entire
data trail along the analysis pipeline and publicise the methodology that is used to derive
the resultant data. Making their data available potentially can lead to: more citations to
their published papers and results; awareness and adoption of their methodology; and the
discovery of better atomic models built on the models they have derived.

Data archiving is also of interest to the facilities operators because of the potential of
derived data reuse by other researchers who would add more value to the initial experimental
time. However, apart from the raw data, neither the ICAT infrastructure nor the CSMD
model capture derived data whose management is currently left to the experimental scientist.

In the next section we will propose extensions to the CSMD model to capture the derived
data on the basis of an abstraction of the detailed workflow described here.

4 An Enhanced CSMD

This section presents how we extend the CSMD model to describe the analysis process so
that the provenance of the derived data can be captured. Several factors are important for
capturing data provenance, including:

• the data objects involved;

• the programs that produce or consume data objects;

• the ordering of the programs; and

• the parameters to the programs.

• the people who drive the programs.

In a production system, the people element is as important, if not more important, than
the others, for accountability, security, attribution, and archival reasons. However, because
this element has been well captured in the current CSMD model and implemented in ICAT
version 3.3, we shall not include it in this presentation of the extended CSMD model.

13

+...()

-id

-name : string

-parameters : Collection

-datasets : Collection

-studies : Collection

-type : string

-...

Investigation

+...()

-id : int

-name : string

-datafiles : Collection

-investigations : Collection

-...

Dataset

+...()

-id : int

-investigations : Collection

-directory : string

-name : string

-location : string

-link : string

-type : string

-version

-...

Software

1..*

1..*

0..*

0..*

+...()

-process : Software

-...

SoftwareExecution

+...()

-id : int

-investigations : Collection

-directory : string

-location : string

-name : string

-...

RuntimeParameter

1..* 0..*

0..*

1

+...()

-id : int

-childrenstudies : Collection

-name : string

-studyxml : string

-...

Study

0..*

0..*

+...()

-id : int

+dataset : Dataset

-description : string

-directory : string

-link : string

-location : string

-name : string

-...

Datafile

1 1..*

Figure 3: An Extended CSMD Object Model for Supporting Derived Data

Figure 3 is a (concise) object model depicting the extensions and modifications to the core
of the existing CSMD model to support derived data13. In order to keep it digestible, the
connections between the entities presented here and those in the current model14 are omitted.
For example, in the current model, the entities - datafile and dataset, are linked to the
entity parameter (via datafileParameter and datasetParameter) to describe, the set of
instrument parameter settings related to them.

An object model is an abstraction of the objects involved and the relationship between
the objects. In real world systems, the object model is manifested15 as data models, which
can be implemented in all kinds of object-oriented programming languages (e.g. Java, C++
or C#), relational databases (e.g. MySQL, Oracle), RDF, XML Schemas, and even an XML
databases (e.g. eXist).

A data model can also be implemented in scripting and interpretive programming lan-
guages, such as Perl, PHP, or even Javascript, in a non-object oriented fashion, although
this is not recommended because it will lose the benefits of object-orientation. However, this
highlights an important point: the model can be mapped to various data models, as long as
they all conform to the same object model. The benefit of doing so is to enable the inter-
operation among the implementations upon the data models. In practical terms, this means
that the derived data provenance captured in one data model, for example, implemented in
Java, can be pushed to a data repository implemented in another data model, for example,
implemented as a relational database. Conversely, the provenance stored in a database can
be presented in another data model, for example, in a XML schema. The transformation

13For a complete set of the attributes and operations of each object, readers are referred to the sourceforge
website: http://icatlite.sourceforge.net/.

14ICAT 3.3 Database schema: http://icatproject.googlecode.com/svn/icat3_api/trunk/

icat3-database/IcatDB/jdeveloper/icat/schemadiagrams/model/icat_v3.png
15Hereafter, we use the following terms interchangeably: manifest and map.

14

http://icatlite.sourceforge.net/
http://icatproject.googlecode.com/svn/icat3_api/trunk/icat3-database/IcatDB/jdeveloper/icat/schemadiagrams/model/icat_v3.png
http://icatproject.googlecode.com/svn/icat3_api/trunk/icat3-database/IcatDB/jdeveloper/icat/schemadiagrams/model/icat_v3.png

between the data models can be facilitated by, for example, Java. In the next section, we
shall present our implementation of such an example, showcasing how these mappings can be
realised and are used to the benefit of capturing derived data provenance.

Specifically, the extensions and modifications are introduced to the model underpinning
ICAT 3.3 along the following directions:

• adding a SoftwareExecution subclass of investigation;

• linking program to a software execution;

• linking software executions with datasets;

• associating parameters with a software execution;

• re-introducing the study ; and

• introducing study nesting.

We shall now describe these extensions and the rationales behind them.

4.1 Adding a SoftwareExecution Investigation Type

As discussed in Section 2, an investigation models a data handling activity, which, in the
current model, means three types of activities: measurements, experiments, and simulations
[10]. None relates to the data handling activities in an data analysis process.

A new type of investigation, SoftwareExecution is introduced to model the executions of
one data analysis task in the process. In modern research, a task is typically the running of
a piece of software. Our model does not mandate what a piece of software might be. It can
be a system of programs, for example MATLAB, which consist of many programs implementing
various functionalities. Or, it can be one program implementing a specific function as part
of a system of programs, for example, a Fast Fourier transformation function in MATLAB. The
decision of such is left to the users of our software, the researchers, because only they know
about what is the most suitable and useful representation of the execution of a task in their
data analysis process.

As illustrated in Figure 4, the SoftwareExecution concept captures the scenario that a piece
of software is executed many times, yielding results, each corresponding to a combination of
the following components:

• the software used for the execution,

• the parameters (e.g. the settings of experiments or simulations where an input dataset
is obtained, or the settings for an analysis methodology),

• the input datasets (e.g. readings captured from instruments or simulations), and

• the output datasets (e.g. the results of an analysis function).

We use an analogy to explain the rationale behind the modelling of this concept. A (re-
search) problem can be analogous to a ‘puzzle’, a task the building of a ‘jigsaw’ in order to
solve one part of the ‘puzzle’, and the execution of a task a ‘jigsaw’ built with one combina-
tion of parameters, datasets, and program settings to solve that part of the ‘puzzle’. Every

15

Software

Input DatasetParameters
P1 DI1

S

DO1

P2 DI1

S

DO2

Output

Dataset

P1 DI2

S

DO3

P2 DI2

S

DO4

a) b)

Figure 4: a) The SoftwareExecution Concept; b) Four SoftwareExecutions depicting the
scenario of running the same piece of software four times, each taking a set of parameters and
input datasets, and yielding different output datasets

researcher has an idea of what tasks are required to solve a problem and how to execute the
tasks. Because research is often open-ended and iterative, the usefulness and impact of an
(early-stage) analysis is often difficult to judge. Therefore, keeping track of all the potentially
useful ‘jigsaws’ along a research trial is not only important but also valuable to researchers.

‘Jigsaws’ can be built by the same person or independently by different people in solving
a part of a puzzle. Once the ‘jigsaws’ are built, they can be put together to a) either lead to
different solutions to the same problem; or b) form new ‘jigsaws’ to solve a different problem,
leading to unexpected new discoveries. For the former, judging which solution is the best is
an issue beyond the scope of this paper. However, we believe that capturing the different
‘paths’ presented in derived data provenance trails can be a powerful approach for addressing
research problems. Sections 4.5 present how we put these ‘jigsaws’ together to form a big
picture of a solution to solve a ’puzzle’.

4.2 Linking Software to SoftwareExecution

SoftwareExecution is a runtime notion meaning that it is not only associated with a software
program but also inputs (including data files and the parameters) that drive the program and
the corresponding outputs resulted from running the program using those inputs. A software
execution comprises of: one (and only one) program,16 one or more input datasets, one or
more output datasets, and zero or more parameters to the program. Capturing computer
software related to data is a complex issue; see for example [11, 12] for a consideration of the
complexity of characterising software. For example, even with the same software, there are
often different versions in existence and they may or may not compatible with each other,
and may behave differently in different execution environments. In this paper, we take a
simplified view of software by focusing on the data aspect of the derived data provenance

16the program could be formed from a number of programs linked together, but intermediate input and
outputs are not persisted and catalogued.

16

trails. In practical terms, this means that the inputs (parameters or datasets) used for one
version of a program may not be workable with another one. We are aware of this issue and
consider it a topic for further research.

4.3 Linking SoftwareExecutions to Datasets

Software executions are linked to datasets to capture their context in the provenance process
as follows.

Input and output datasets

Two types of datasets are introduced to denote the inputs to and outputs from an execution
of a program. Note that they are associated with an execution of a program not the program
itself. This is an important aspect of the analysis we would like to capture reflecting the the
open ended nature of scientific research.

Associating Multiple SoftwareExecutions to Input Datasets

In the current model, there is an one to many relationship between investigation and dataset.
However, a program can run many times using different sets of parameters but with the same
input dataset. Hence, the relationship between investigation and dataset is extended to be
many to many so that it accommodates this scenario.

4.4 Associating parameters with a SoftwareExecution

One program can be executed several times resulting in several (program) executions. All
can correspond to the same input dataset(s) but with different output datasets and runtime
parameters. A program can take zero or more parameters, but a parameter must be associated
with at least one software execution. The linkage between RuntimeParameter and Program
is through SoftwareExecution.

4.5 Re-introducing Study and Nested Study

The Study is a concept designed for grouping related investigations together to capture a com-
mon intentionality, such as a research programme, or the analysis of a particular compound.
It is a part of the existing CSMD model, although not currently implemented in the current
ICAT 3.3 as that it tailored to capture the generation of raw data from a facility instrument,
thus each investigation is the unit of intentionality and investigation and study are in a one
to one relationship, so study is seen as superfluous. However, this is not the case when we
need to consider derived data, and we use it to capture the means by which SoftwareExe-
cutions are related to each other. For example, in the analysis process, a study is used to
group SoftwareExecutions together in a particular order. The ordering depicts explicitly the
relationship between the investigations reflecting the sequence of the data handling activities
involved in a scientific process.

Through a study, SoftwareExecutions can be chained together to form a connected se-
quence of analysis activities in the process. For example, using the same set of programs,
executions can be chained together to form an analysis flow reflecting the use of a set of input
data files and parameters. A different chain can be formed reflecting the use of a different

17

set of files and parameters. The exended study concept provides an end-to-end support for
data management covering the experimental data gathered from instruments, to intermediate
derived data generated during the analysis process, to the resultant data finally appeared in
papers.

A nested study is a notion for nesting a study inside one or more other studies. When
a study nests inside another study, the former is called a childstudy and the latter a
parentstudy. When a study is a child of several studies, the parent studies share the same
task in their analysis process.

It is not uncommon that iterations of analyses are performed before a satisfied set of results
can be obtained. Several of such “chains” can be formed when conducting an analysis process.
A nested study is a notion for grouping related studies (or chains). Such relationship can be
adjunctive in that the output from one study is used as the input to another. The studies
can be parameter sweeps in that two studies use the same set of programs and input data
files but with different runtime parameters. They can also be functionally equivalent when
two studies use the same set of inputs (data files, parameters) but with a set of functionally
equivalent programs. This last category is particularly interesting because it opens up the
possibility of comparing existing analyses with future analyses. However, this is beyond the
scope of this report.

4.6 Observation

Although the extended model we have presented has been developed for solving the data
management problem in context of ”big science” carried out in large-scale facilities, we believe
that it is a discipline neutral approach that can be used to solve derived data management
problems in other disciplines, and also in the small-scale context found in the university
research laboratory.

5 ICAT-personal: A Pilot Implementation

A pilot implementation of the extended CSMD model has been developed for the purpose of
supporting the capturing, cataloguing and storing of derived data for individual researchers,
typically working in university research laboratories. Such researchers may have limited
capability for systematic data management, and thus this approach offers a rigorous but
feasible method to capture data generated in laboratory analysis and make it retrievable and
reusable. Because it is designed to tackle data management problems of individuals, it is
named iCat-Personal. It is available through the sourceforge website.17 It is a lightweight
version of ICAT because it implements the core of the extended CSMD model to demonstrate
the feasibility of capturing and cataloguing derived data.

We shall describe its design and development focusing on the current capabilities of the
implementation.

5.1 System Architecture

Figure 5 illustrates the system architecture of iCat-Personal, an Java-based implementation
for data ingestion and restoration, and a PHP-based web application for data browsing. It

17http://icatlite.sourceforge.net/

18

Architecture

Deposit & access

Web clients
Scripts or

OS context menu

Client

7/26/2010 3I2S2 Pilot Implementation and Planning - Erica Yang

Analysed
Data

Data Ingestion
(XMLExtractor)

Data Restoration
(DataGrabber)

Data Browser
(DotGeneration)

System Utility Programs

J2EE (Glassfish, EJB3, JPA), JAXB, Servlets

JDBC

Utility
programs

Data
Repository

Figure 5: ICAT-personal System Architecture

consists of three layers: clients, utility programs, and a repository. Two types of clients are
supported: command line scripts for getting the data into the repository and restoring data
from a repository, and a web browser interface for browsing and navigating derived data stored
in the repository. The utility program transforms the data sent from the script and ingest
them into a persistent data repository through Java entity beans over a Hibernate-based
persistence layer underpinning by a MySQL relational database.

Three key functions of data management are supported, they are: data ingestion, data
browsing, and data restoration; all are underpinned via a data catalogue. The targeted
audience of this implementation is individual scientists who need a data management tool
to assist their research. Future research will investigate how well the model accommodates
issues of remote data storage (instead of storing the data locally on the same computer
as the source of the derived data), data reuse (e.g. secondary analysis and cross analyses
study), and data sharing (e.g. derived data publication, linked data, and its relevance to
automated experimentation). As a pilot implementation, data annotation, searching and
discovery, although important, are not considered in the implementation.

The object model presented in the previous section is mapped into two data models: a
XML schema (see Appendix A for complete transcript of the XML Schema) and a database
schema (see Appendix B for a complete transcript of the Database Schema). The former is
used by the client to guide the ingestion of derived data provenance into an iCAT-Personal
data repository; whilst the latter is the database structure underpinning the repository. We
use the Gudrun program in the RMC workflow to explain their role in managing derived data.

19

An Example: Gudrun

d1 d2 d3 d4 param1

Gudrun_java

d5

7/27/2010 5I2S2 Pilot Implementation and Planning - Erica Yang

d6

d7

d8

Purge_det

Gudrun_dcs

Figure 6: Derived Data Management: An Example

5.2 Derived Data Management

Figure 6 illustrates the “before” and “after” scenarios of using ICAT-Personal tools to manage
derived data. The left hand side is a number of hierarchical file folders where scientists store
the programs, scripts, raw data files, instrument settings, and initial parameter inputs to
programs, each in a separate directory. The last one is called a working directory where the
parameters (stored in a configuration file), raw data input files, intermediate and final output
files reside. Each execution of the programs corresponds to a separate working directory. As
with the RMC analysis process, many scientific analyses involve several programs. Scientists
often end up with many working directories, each storing the data resulted from one execution.
Managing such working directories is challenging because:

• Most programs are run many times. Until the final results at the end of the analysis
process are available, it is sometimes difficult to tell which executions are useful. So, all
the potentially useful ones need to be kept.

• Scientists also need to keep track of the relationships between the executions. Again,
until the final results are available, all the links (which often mean many directories,
and sub-directories) have to be kept.

• Different scientists have their own way of keeping the parameters and settings of each
execution. These may be stored in annotation files in the working directory, or in a
paper lab notebook for example. Without the parameters, it is hard to understand the
outputs from the programs or continue other researchers’ analyses.

As a consequence, even with the raw data, it is difficult for other people to reproduce derived
data.

5.2.1 Data ingestion

On the right hand side of Figure 6 is a structured representation of the executions of the
programs involved in Gudrun. The structure represents how the executions of different pro-

20

1 <processes><process id="gudrun_java" type="java program">...</process>...</processes>

2 <parameters><parameter id="param1"> ... </parameter> ... </parameters>

3 <datafiles>

4 <datafile id="df1"><name>Gudrun_dcs.txt</name> ... </datafile>

5 ...

6 <datafile id="df18"><name>SLS39542.RAW</name> ... </datafile>

7 </datafiles>

8 <datasets>

9 <dataset id="d1">

10 <datafileref idref="df1"/>

11 <datafileref idref="df6"/>

12 ...

13 </dataset>

14 <dataset id="d2">

15 <datafileref idref="df2"/>

16 </dataset>

17 ...

18 </datasets>

19 <investigations>

20 <investigation id="i1" type="softwareexecution">

21 <processref idref="gudrun_java"/>

22 <datasetref idref="d1" type="output"/>

23 <datasetref idref="d2" type="output"/>

24 </investigation>

25 <investigation id="i2" type="softwareexecution">

26 <datasetref idref="d2" type="input"/>

27 <processref idref="purge_det"/>

28 <datasetref idref="d3" type="output"/>

29 </investigation>

30 ...

31 </investigations>

32 <studies>

33 <study id="s1">

34 <name>Gudrun Data Reduction Study</name>

35 <investigationref idref="i1" />

36 <investigationref idref="i2" />

37 <investigationref idref="i3" />

38 </study>

39 </studies>

Figure 7: Example XML file capturing a Gudrun execution process

grams inside Gudrun are linked together. ICAT-Personal tools store the structure as well as
the contents inside the structure into an ICAT-Personal repository underpinned by the J2EE
technologies depicted in Figure 5. This process is called ICAT-Personal data ingestion. It is
guided by an ICAT-Personal XML schema compliant XML file. Figure 7 illustrates a snippet
of such an XML file, which captures:

• programs in the process (line 1),

• inputs, including data files and parameters (or parameter files), to and outputs (e.g.
data files, plots) from the programs (lines 2 - 7),

• datasets, the logical groupings of the datafiles (lines 8 - 18),

• SoftwareExecutions and their linkage with datasets (lines 19 - 31), and

• the order of the software executions (lines 32 - 39)

21

A complete transcript of this XML file is given in Appendix B. The XML Schema used
to define this XML format is given in Appendix A.

A Java based XMLExtractor program, built upon the JAXB technology, is used to parse
the XML file and generates Java entity beans from the XML. The beans are ingested into the
database via a Hibernate-based persistence layer over MySQL.

5.2.2 Data Browsing

An ICAT-Personal tool, named DotGeneration, provides data browsing capability. It takes an
ICAT-Personal data ingestion XML file, transforms it into a Graphviz18 dot file, and generates
a flow diagram as depicted on the right hand side of Figure 6. In the current database schema,
the dot file and the corresponding snippet of the XML are also ingested into the database.
A PHP based web application has also been developed to display the relationship between
programs, parameters, datafiles, datasets, SoftwareExecutions and studies.

Datasets, labelled as d1 to d8 in the Figure 6, are used to capture the relationship be-
tween data files produced or consumed by one execution. Among all the input data files to
Gudrun java, four datasets are used, they represent four groups/types of data: raw data, sam-
ple and vanadium metadata, instrument data, and neutron/x-ray information, respectively.
Other scientists may consider different types of relationships between the files by classifying
them into three datasets: raw, correction, and calibration data. Such grouping is important
because the relationships between the files are not self evident by examining them directly.

Figure 8 depicts another view of the above Gudrun example presented in a Firefox Web
browser, expanded with the detailed data files involved in each program.

5.2.3 Data Restoration

As presented in the previous section, a SoftwareExecution is an encapsulation of the ob-
jects (the program, and the inputs and parameters to and outputs from the program) in-
volved in running a software application. Three ordered SoftwareExecutions, corresponding
to Gudrun java, Purge det, and Gudrun dcs, respectively, are grouped into one study, which
represents an instance of the data reduction process, involving

• all the programs, and

• all the raw and derived data, comprising of:

– all the initial input data files,

– environment and instrument settings,

– parameters that used to drive the programs,

– all the intermediate outputs, and

– finally to the reduced data files.

This process can be repeated many times leading to many studies (i.e. execution instances)
of the process. Each corresponds to a combination of three SoftwareExecutions captured
by the ICAT-Personal data management tool. Structured data at various levels (dataset,
investigation, and study) can then be restored using the ICAT-Personal DataGrabber tool
from the repository.

18http://www.graphviz.org

22

Figure 8: The Gudrun example in a Web browser view with details of data files involved

23

6 Discussion and Future Work

The data management approach to handling the analysis process would seem well matched to
the infrastructure supporting structural science in facilities and potentially a wider scientific
community. Storing and retrieving data from throughout the scientific process is a common
problem across many disciplines that exploit computational methodologies and high through-
put data handling techniques. The analysis presented here in detail only addresses a single
study in earth sciences, while other studies in chemistry and crystallography have contributed
to the analysis leading to the proposals for changes to the CSMD, and the approach described
is also now being generalised into a common information model for structural science in the
I2S2 project19. This common model combines the expressive power in describing the context
and structure of data collections offered by the CSMD with the conceptual framework for
modelling experimental process planning and enactment offered by the ORE-CHEM [3], and
models a wide range of activities within the scientific life cycle.

It is nevertheless a concern whether the breadth of tasks analysed reflects the whole
scope of the target system. At present the usage patterns of the facilities considered are
reflected in the sample of tasks analysed, but that may change over time. Other facilities may
need to be supported by the CSMD which will introduce further disciplines and different data
transformation processes. In particular, if disciplines such as astronomy and earth observation
data were to be included, the data collection and analysis processes from those disciplines
might lead to further changes to the CSMD.

The changes proposed to the CSMD capture the source of the data, and the transfor-
mation process that is has gone through, and reflects the Open Provenance Model [13], but
the implementation does not provide a comprehensive provenance management system. [8]
argues that a provenance management system can only be useful for a real world application
if it allows querying of provenance information for resultant data items. It is unrealistic to
expect a complete provenance management system which will use provenance data to auto-
matically recreate resultant data items by executing the transformations that were used in
its creation [7].

It would be possible to enhance the ICAT prototype to allow the propagation of the com-
plete provenance of resultant data so that researchers can query it for the transformations
used without having to successively unpack the datasets involved. In a simple example, if it
becomes known that a particular version of a piece of software was unsafe for a parameter
range, the provenance could be queried to provide all resulting data that was produced by us-
ing that software in its unsafe range. A more complex example would query for a combination
of transformations within the provenance from different datasets in a study, e.g. programs
X and Y were used consecutively in the transformation when their underlying models have
been found to be incompatible and the resultant data could be unsafe. Such advances on the
current implementation would clearly add to the safety of the scientific results derived from
the transformations recorded in the provenance. However, such a query system would require
the automated splitting of datasets to isolate the transformation data and the subsequent
merging of that transformation data for each stage into a single provenance item describing
the overall process. Such provenance records would then have to be open to be queried for
co-occurring transformations or transformation parameter values Such a system is beyond
the scope of the current development, although it could not be attempted without the work

19http://www.ukoln.ac.uk/projects/I2S2/

24

presented here to build upon, and they could be a topic for future work.
The tools considered in the analysis simply consume and produce files. Some more sophis-

ticated, but very commonly used, tools such as Chimera [16] offer a Virtual Data Catalog as
a relational database for provenance information where users register transformations, data
objects and derivations. Such records could be incorporated into datasets in CSMD, but
to use them profitably would require the access by the appropriate RDBMS to provide a
query interface. This would add further complexity to any attempt to develop a complete
provenance management system around the CSMD.

The scientific process described above was undertaken as publicly funded research for
which the main security concerns are to embargo release of data until after the scientists
undertaking the experiments have published their results and then to make them as publicly
open as possible to gain maximum value from the investment. However, large facilities of
the class considered in this paper are also used by commercial organisations, or academics
funded by commercial organisations. In these cases there may be more exacting security
concerns. The modifications proposed here to account for derived data address the Core part
of the CSMD only. The second main module of the CSMD addresses security metadata. It
is common in these circumstances for all derived data to be required to be handled as the
original data received in which case a single data policy would apply to the whole CSMD
record. However, security policies are becoming more sophisticated and it is possible for the
derivation process to either reduce or, more likely, increase the security constraints on data as
it moves through the scientific process and its value increases. When different policies apply
to the derived data from the original data then the current single CSMD security node will not
be enough, but would have to link policies to individual datasets. Alternatively, the current
single security node could be maintained with the use of more sophisticated policies that refer
to differently labelled data items explicitly [18]. As commercial use of large facilities becomes
more common security issues will become increasingly important to resolve and standardise.

A recent proposal advocates encapsulating published data files in self-contained units of
knowledge which they term Research Objects - semantically rich aggregations of resources,
that possess some scientific intent or support some research objective [1, 2]. A research
object bundles together essential information relating to experiments and investigations. This
includes not only the data used, and methods employed to produce and analyse that data,
but also the people involved in the investigation. The authors present a number of principles
that they expect such objects and their associated services to follow: reusable, repurposeable,
repeatable, reproducable, playable, traceable. These are indeed the properties which the
CSMD records have in principle after the inclusion of the modifications proposed in this
paper. The authors propose the use of rich ontologies to encode these properties as an
essential requirement for their usability. The current CSMD lacks such semantically rich
encoding, but this again would appear to be a clear direction for further development.

Finally, we should point out that the current work only captures several fairly limited
aspects of software and software executions. At this stage, our aim is to understand its rel-
evance to data provenance. It is not our aim to realise the so-called “one-click” execution
dimension of scientific process management. We feel that this is just the beginning to unveil
the challenges of dealing with software and executions (e.g. hardware, OS, environment vari-
ables, support libraries) in the process, which embrace issues such as handling the relationship
between a software execution and a software version, deciding what aspects of a software and
executions are needed to be captured, and how to capture them.

25

When What Stakeholders

June 2010 Project internal meeting NCS + I2S2 use case investiga-
tors/partners

June 2010 1st Demo and basic functionalities ISIS GEM & SANDALS instrument sci-
entists

July 2010 Project internal meeting NCS + I2S2 use case investiga-
tors/partners

Aug. 2010 Telco I2S2 project manager with JISC pro-
gramme manager

Sept. 2010 Demo discussion ISIS GEM instrument scientist
Oct. 2010 functionality refinement ISIS instrument scientist, facility IT per-

sonnel

Table 1: Stakeholder Engagement

7 Final Remarks

The work described in this report has been presented to and discussed with various stake-
holders of the I2S2 project between May 2010- March 2011. The development, especially
the software design and development, has gone through an iterative process, guided by the
continuous feedbacks and comments from our stakeholders. Features were planned in about
2 months in advance based on the requirements we have gathered in the early stage of the
project (i.e. the requirement deliverable [15, 22]). The features were showcased to perspec-
tive stakeholders to gather feedbacks which were fed immediately into the next round of the
feature planning, implementation and revision.

7.1 Stakeholder Engagement

Table 1 describes a list of meetings and informal discussions we have with our stakeholders
related to the development of the pilot implementation.

7.2 Stakeholder Feedbacks

This section briefly summaries some desirable features extracted from the discussion we have
with the stakeholders. These features can be used to guide the next phase of the pilot imple-
mentation till the end of December 2010, depending on the availability of project resources.

Data Browsing

1. The browsing interface should provide flexibility allowing scientists to have a detailed
view of the data files (i.e. zoom in) but also have an abstract view of the dataset (i.e.
zoom out). This is not supported by the current implementation (as of October 2010).

2. The interface should also allow scientists to flag up the important components (e.g. key
inputs or key outputs) of an analysis.

26

Data Provenance Versioning Scientists have also commented it would be good to allow
them to ‘roll back’ to a previous version of an analysis. This is because in the day-to-day data
analysis, it is often in a later stage of an analysis one realises the mistakes they have made in
the early stage of the analysis. The ‘rolling’ back operation would allow them to go back to
take a different path (e.g. with different parameters, or reducing the previously unidentified
noise in raw data files) down the analysis pipeline.

Annotation During the August telco with the JISC programme manager, an interesting
comment upon “automated or guided metadata capture” were raised. The current design and
implementation largely hide the complexity of metadata capturing and ingestion from users.
However, by metadata, we mean specifically data provenance. This seems to be sufficient
for the present target users, i.e. individual scientists, as identified in the implementation
plan. That is why the tools are call ICAT-“personal”. It is intended for personal use. Hence,
there is no security model in place in the current infrastructure design to enforce security
functionalities, such as authentication, access control, embargo control.

However, if other types of metadata, like those defined in Dublin Core (e.g. the creator of
a data file), about analysed data are required, more sophisticated infrastructure components
(e.g. user identity management, authentication) have to be introduced into the software
system.

27

Appendices

Appendix A: XML Schema for Data Ingestion

This section presents a XML schema based on the extended CSMD model to facilitate the
data ingestion functionality of the ICAT-Personal implementation.

<?xml version="1.0" encoding="utf-16"?>1

<xsd:schema attributeFormDefault="unqualified"2

elementFormDefault="qualified"3

version="1.0"4

xmlns:xsd="http://www.w3.org/2001/XMLSchema"5

>6

<xsd:element name="root" type="rootType" />7

<xsd:complexType name="rootType">8

<xsd:sequence>9

<xsd:element name="processes" type="processesType" />10

<xsd:element name="parameters" type="parametersType" />11

<xsd:element name="datafiles" type="datafilesType" />12

<xsd:element name="datasets" type="datasetsType" />13

<xsd:element name="investigations" type="investigationsType" />14

<xsd:element name="studies" type="studiesType" />15

</xsd:sequence>16

</xsd:complexType>17

<xsd:complexType name="studiesType">18

<xsd:sequence>19

<xsd:element maxOccurs="unbounded" name="study" type="studyType" />20

</xsd:sequence>21

</xsd:complexType>22

<xsd:complexType name="studyType">23

<xsd:sequence>24

<xsd:element maxOccurs="unbounded" name="investigationref"25

type="investigationrefType" />26

<xsd:element maxOccurs="unbounded" name="studyref" type="studyrefType" />27

</xsd:sequence>28

<xsd:attribute name="id" type="xsd:string" />29

<xsd:attribute name="name" type="xsd:string" />30

</xsd:complexType>31

<xsd:complexType name="studyrefType">32

<xsd:attribute name="idref" type="xsd:string" />33

</xsd:complexType>34

<xsd:complexType name="investigationrefType">35

<xsd:attribute name="idref" type="xsd:string" />36

</xsd:complexType>37

<xsd:complexType name="investigationsType">38

<xsd:sequence>39

<xsd:element maxOccurs="unbounded" name="investigation"40

type="investigationType" />41

28

</xsd:sequence>42

</xsd:complexType>43

<xsd:complexType name="investigationType">44

<xsd:sequence>45

<xsd:element maxOccurs="unbounded" name="datasetref"46

type="datasetrefType" />47

<xsd:element name="processref" type="processrefType" />48

<xsd:element maxOccurs="unbounded" name="parameterref"49

type="parameterrefType" />50

</xsd:sequence>51

<xsd:attribute name="id" type="xsd:string" />52

<xsd:attribute name="type" type="xsd:string" />53

</xsd:complexType>54

<xsd:complexType name="parameterrefType">55

<xsd:attribute name="idref" type="xsd:string" />56

</xsd:complexType>57

<xsd:complexType name="processrefType">58

<xsd:attribute name="idref" type="xsd:string" />59

</xsd:complexType>60

<xsd:complexType name="datasetrefType">61

<xsd:attribute name="idref" type="xsd:string" />62

<xsd:attribute name="type" type="xsd:string" />63

</xsd:complexType>64

<xsd:complexType name="datasetsType">65

<xsd:sequence>66

<xsd:element maxOccurs="unbounded" name="dataset"67

type="datasetType" />68

</xsd:sequence>69

</xsd:complexType>70

<xsd:complexType name="datasetType">71

<xsd:sequence>72

<xsd:element maxOccurs="unbounded" name="datafileref"73

type="datafilerefType" />74

</xsd:sequence>75

<xsd:attribute name="id" type="xsd:string" />76

</xsd:complexType>77

<xsd:complexType name="datafilerefType">78

<xsd:attribute name="idref" type="xsd:string" />79

</xsd:complexType>80

<xsd:complexType name="datafilesType">81

<xsd:sequence>82

<xsd:element maxOccurs="unbounded" name="datafile"83

type="datafileType" />84

</xsd:sequence>85

</xsd:complexType>86

<xsd:complexType name="datafileType">87

<xsd:sequence>88

29

<xsd:element name="name" type="xsd:string" />89

<xsd:element minOccurs="0" name="directory" type="xsd:string" />90

<xsd:element minOccurs="0" name="description" type="xsd:string" />91

</xsd:sequence>92

<xsd:attribute name="id" type="xsd:string" />93

</xsd:complexType>94

<xsd:complexType name="parametersType">95

<xsd:sequence>96

<xsd:element maxOccurs="unbounded" name="parameter"97

type="parameterType" />98

</xsd:sequence>99

</xsd:complexType>100

<xsd:complexType name="parameterType">101

<xsd:sequence>102

<xsd:element name="name" type="xsd:string" />103

<xsd:element minOccurs="0" name="directory" type="xsd:string" />104

<xsd:element name="parameterfile" type="xsd:string" />105

</xsd:sequence>106

<xsd:attribute name="id" type="xsd:string" />107

</xsd:complexType>108

<xsd:complexType name="processesType">109

<xsd:sequence>110

<xsd:element maxOccurs="unbounded" name="process"111

type="processType" />112

</xsd:sequence>113

</xsd:complexType>114

<xsd:complexType name="processType">115

<xsd:sequence>116

<xsd:element name="name" type="xsd:string" />117

<xsd:element minOccurs="0" name="directory" type="xsd:string" />118

</xsd:sequence>119

<xsd:attribute name="id" type="xsd:string" />120

<xsd:attribute name="type" type="xsd:string" />121

</xsd:complexType>122

</xsd:schema>123

30

Appendix B: An Example Data Ingestion XML

An example data ingestion XML file is shown below. It corresponds to the diagram on the
right hand side of Figure 6.

<?xml version="1.0" encoding="UTF-8"?>124

125

<root id ="An Example Data Ingestion XML">126

<processes>127

<process id="gudrun_java" type="java program">128

<name>GudrunGUI_2.jar</name>129

<directory>GudrunGUI_2</directory>130

</process>131

<process id="purge_det" type="fortran program">132

<name>purge_det.ex</name>133

<directory>GudrunGUI_2</directory>134

</process>135

<process id="gudrun_dcs" type="fortran program">136

<name>Gudrun_dcs.ex</name>137

<directory>GudrunGUI_2</directory>138

</process>139

</processes>140

<parameters>141

<parameter id="param1">142

<parameterfile>143

f1.param144

</parameterfile>145

<name>f1.param</name>146

<directory></directory>147

</parameter>148

<parameter id="param2">149

<parameterfile>150

f2.param151

</parameterfile>152

<name>f2.param</name>153

<directory></directory>154

</parameter>155

<parameter id="param3">156

<parameterfile>157

f3.param158

</parameterfile>159

<name>f3.param</name>160

<directory></directory>161

</parameter>162

<parameter id="param4">163

<parameterfile>164

f4.param165

</parameterfile>166

31

<name>f4.param</name>167

</parameter>168

<parameter id="param5">169

<parameterfile>170

f5.param171

</parameterfile>172

<name>f5.param</name>173

</parameter>174

<parameter id="param6">175

<parameterfile>176

f6.param177

</parameterfile>178

<name>f6.param</name>179

</parameter>180

</parameters>181

<datafiles>182

<datafile id="df1">183

<name>Gudrun_dcs.txt</name>184

<directory>run.SANDALS.Water</directory>185

</datafile>186

<datafile id="df2">187

<name>purge_det.dat</name>188

<directory>run.SANDALS.Water</directory>189

</datafile>190

<datafile id="df3">191

<name>spec.bad</name>192

<directory>run.SANDALS.Water</directory>193

</datafile>194

<datafile id="df4">195

<name>SLS39631.mgor01</name>196

<directory>run.SANDALS.Water</directory>197

</datafile>198

<datafile id="df5">199

<name>SLS39631.mint01</name>200

<directory>run.SANDALS.Water</directory>201

</datafile>202

<datafile id="df6">203

<name>Detector_withNIMROD.dat</name>204

<directory>StartupFiles.SLS</directory>205

<!-- description: Detector calibration file name -->206

</datafile>207

<datafile id="df7">208

<name>groups_18_clean2.dat</name>209

<directory>StartupFiles.SLS</directory>210

<!-- description: Groups file name -->211

</datafile>212

<datafile id="df8">213

32

<name>SLSdeadtime.cor</name>214

<directory>StartupFiles.SLS</directory>215

<!-- description: Deadtime constants file name -->216

</datafile>217

<datafile id="df9">218

<name>sears91_gudrun.dat</name>219

<directory>StartupFiles.SLS</directory>220

<!-- description: Neutron scattering parameters file -->221

</datafile>222

<datafile id="df10">223

<name>spectrum000.dat</name>224

<directory>StartupFiles.SLS</directory>225

<!-- description: Filename containing incident beam spectrum parameters -->226

</datafile>227

<datafile id="df11">228

<name>SLS39629.RAW</name>229

<directory>RawData.SANDALS</directory>230

<!-- description: NORMALISATION data files -->231

</datafile>232

<datafile id="df12">233

<name>SLS39630.RAW</name>234

<directory>RawData.SANDALS</directory>235

<!-- description: NORMALISATION BACKGROUND data files -->236

</datafile>237

<datafile id="df13">238

<name>slsvanadium.bragg</name>239

<directory>StartupFiles.SLS</directory>240

<!-- description: Normalisation differential cross section filename -->241

</datafile>242

<datafile id="df14">243

<name>SLS39621.RAW</name>244

<directory>RawData.SANDALS</directory>245

<!-- description: SAMPLE D2O 25C data files -->246

</datafile>247

<datafile id="df15">248

<name>SLS39637.RAW</name>249

<directory>RawData.SANDALS</directory>250

<!-- description: SAMPLE D2O 25C data files -->251

</datafile>252

<datafile id="df16">253

<name>SLS39641.RAW</name>254

<directory>RawData.SANDALS</directory>255

<!-- description: SAMPLE D2O 25C data files -->256

</datafile>257

<datafile id="df17">258

<name>SLS39534.RAW</name>259

<directory>RawData.SANDALS</directory>260

33

<!-- description: CONTAINER 1mm TiZr can data files -->261

</datafile>262

<datafile id="df18">263

<name>SLS39542.RAW</name>264

<directory>RawData.SANDALS</directory>265

<!-- description: CONTAINER 1mm TiZr can data files -->266

</datafile>267

<datafile id="df19">268

<name>GNUplot.plt</name>269

<directory>run.SANDALS.Water</directory>270

<!-- description: Gnuplot files -->271

</datafile>272

</datafiles>273

<datasets>274

<dataset id="d1">275

<datafileref idref="df1"/>276

<datafileref idref="df6"/>277

<datafileref idref="df7"/>278

<datafileref idref="df8"/>279

<datafileref idref="df9"/>280

<datafileref idref="df10"/>281

<datafileref idref="df11"/>282

<datafileref idref="df12"/>283

<datafileref idref="df13"/>284

<datafileref idref="df14"/>285

<datafileref idref="df15"/>286

<datafileref idref="df16"/>287

<datafileref idref="df17"/>288

<datafileref idref="df18"/>289

<datafileref idref="df19"/>290

</dataset>291

<dataset id="d2">292

<datafileref idref="df2"/>293

</dataset>294

<dataset id="d3">295

<datafileref idref="df3"/>296

</dataset>297

<dataset id="d4">298

<!-- description: -->299

<datafileref idref="df4"/>300

<datafileref idref="df5"/>301

</dataset>302

<dataset id="d5">303

<datafileref idref="df19"/>304

</dataset>305

</datasets>306

<investigations>307

34

<investigation id="i1" type="analysis">308

<processref idref="gudrun_java"/>309

<datasetref idref="d5" type="others"/>310

<datasetref idref="d1" type="output"/>311

<datasetref idref="d2" type="output"/>312

</investigation>313

<investigation id="i2" type="analysis">314

<datasetref idref="d2" type="input"/>315

<processref idref="purge_det"/>316

<datasetref idref="d3" type="output"/>317

</investigation>318

<investigation id="i3" type="analysis">319

<datasetref idref="d1" type="input"/>320

<datasetref idref="d3" type="input"/>321

<processref idref="gudrun_dcs"/>322

<datasetref idref="d4" type="output"/>323

</investigation>324

</investigations>325

<studies>326

<study id="s1">327

<investigationref idref="i1" />328

<investigationref idref="i2" />329

<investigationref idref="i3" />330

</study>331

</studies>332

</root>333

334

35

Appendix C: ICAT-Personal Database Schema

This section presents a database schema (MySQL) based on the extended CSMD model for
the ICAT-Personal implementation.

drop database if exists icatlite;335

create database icatlite;336

337

use icatlite;338

339

create table process (340

id bigint(20) not null auto_increment primary key,341

type varchar(20),342

directory varchar(100),343

name varchar(255),344

location varchar(255),345

link varchar(255),346

creationtime timestamp(8) default now(),347

creator int(20)348

);349

350

create table dataset (351

id bigint(20) not null auto_increment primary key,352

creationtime timestamp(8) default now(),353

creator int(20)354

);355

356

create table investigation (357

id bigint(20) not null auto_increment primary key,358

process bigint(20) not null,359

type varchar(20),360

creationtime timestamp(8) default now(),361

creator int(20),362

foreign key (process) references process(id) on update cascade on delete restrict363

);364

365

create table datafile (366

id bigint(20) not null auto_increment primary key,367

dataset bigint(20) not null,368

directory varchar(255),369

name varchar(255),370

location varchar(255),371

description varchar(255),372

creationtime timestamp(8) default now(),373

creator int(20),374

link varchar(255),375

index (dataset),376

foreign key (dataset) references dataset(id) on update cascade on delete restrict377

36

);378

379

create table parameter (380

id bigint(20) not null auto_increment primary key,381

directory varchar(100),382

location varchar(255),383

name varchar(255),384

creationtime timestamp(8) default now(),385

creator int(20)386

);387

388

create table datafile_parameter (389

datafile bigint(20) not null,390

parameter bigint(20) not null,391

creationtime timestamp(8) default now(),392

creator int(20),393

index(datafile, parameter),394

foreign key (datafile) references datafile(id) on update cascade on delete restrict,395

foreign key (parameter) references parameter(id) on update cascade on delete restrict,396

primary key (datafile, parameter)397

);398

399

400

create table dataset_investigation (401

dataset bigint(20) not null,402

investigation bigint(20) not null,403

type varchar(10),404

creationtime timestamp(8) default now(),405

index(dataset, investigation),406

creator int(20),407

foreign key (dataset) references dataset(id) on update cascade on delete restrict,408

foreign key (investigation) references investigation(id) on update cascade on delete restrict,409

primary key (dataset, investigation)410

);411

412

413

create table dataset_parameter (414

dataset bigint(20) not null,415

parameter bigint(20) not null,416

creationtime timestamp(8) default now(),417

index(dataset, parameter),418

creator int(20),419

foreign key (dataset) references dataset(id) on update cascade on delete restrict,420

foreign key (parameter) references parameter(id) on update cascade on delete restrict,421

primary key (dataset, parameter)422

);423

424

37

create table investigation_parameter (425

investigation bigint(20) not null,426

parameter bigint(20) not null,427

creationtime timestamp(8) default now(),428

creator int(20),429

index(investigation, parameter),430

foreign key (investigation) references investigation(id) on update cascade on delete restrict,431

foreign key (parameter) references parameter(id) on update cascade on delete restrict,432

primary key (investigation, parameter)433

);434

435

create table investigator (436

id bigint(20) not null auto_increment primary key,437

creationtime timestamp(8) default now(),438

creator int(20)439

);440

441

create table investigator_investigation (442

investigator bigint(20) not null,443

investigation bigint(20) not null,444

creationtime timestamp(8) default now(),445

index(investigator, investigation),446

creator int(20),447

foreign key (investigator) references investigator(id) on update cascade on delete restrict,448

foreign key (investigation) references investigation(id) on update cascade on delete restrict,449

primary key (investigator, investigation)450

);451

452

create table study (453

id bigint(20) not null auto_increment primary key,454

manager bigint(20) default null,455

xml blob,456

dot blob,457

name varchar(200),458

creator int(20),459

creationtime timestamp(8) default now()460

);461

462

create table study_childstudy (463

parent_study bigint(20) not null,464

child_study bigint(20) default null,465

creationtime timestamp(8) default now(),466

creator int(20),467

index(parent_study, child_study),468

foreign key (parent_study) references study(id) on update cascade on delete restrict,469

foreign key (child_study) references study(id) on update cascade on delete restrict,470

primary key (parent_study, child_study)471

38

);472

473

create table study_investigation (474

study bigint(20) not null,475

investigation bigint(20) not null,476

creationtime timestamp(8) default now(),477

creator int(20),478

index(study, investigation),479

foreign key (study) references study(id) on update cascade on delete restrict,480

foreign key (investigation) references investigation(id) on update cascade on delete restrict,481

primary key (study, investigation)482

);483

484

create table studyManager (485

id bigint(20) not null auto_increment primary key,486

creationtime timestamp(8) default now(),487

creator int(20)488

);489

490

39

Appendix D: ICAT-Personal sourceforge

The code for ICAT-Personal has been made available as open-source software at the following
locations.

ICAT-Personal sourceforge home http://sourceforge.net/projects/icatlite/

ICAT-Personal sourceforge svn http://icatlite.svn.sourceforge.net/viewvc/icatlite/

ICAT-Personal sourceforge wiki http://sourceforge.net/apps/mediawiki/icatlite/

index.php?title=Main_Page

An Overview of the SVN Code Structure

In the ICATlite svn, under a directory called Code, you should find all the code related to
ICAT-personal (or icatlite). In the following, we shall give a brief overview of the directories
under the main trunk directory. Most of these directories correspond to a Netbeans project
(i.e. Desktop,).

ICAT LITE CORE: this is the ingestion part of icatlite, which uses an XML file to guide
the ingestion of the data files into the icatlite database. This is a core part of the system.

Major source code subdirectories of ICAT LITE CORE:
Entities: these are (database) entity beans/classes generated by Netbeans. Every time

the database structure is modified, developers need to generate them again to get them in
syn with the db.

Icat.lite.graphviz: DotGeneration.java: is a Java utility for parsing the XML ingestion file
to generate graphviz dot file and images. It can be used independently from the rest of the
system or be invoked by a backend J2EE application through a WebService calls.

icat.lite.jaxb: this is where the XML ingestion schema (icat lite jaxb.xsd) locates.
Icat.lite.jaxb.utils: contains two Java programs: JaxbUtil.java and XMLExtract.java.

JaxbUtil.java is the jaxb utility class to parse the xml ingestion file. XMLExtract.java uses
the XML file to guide the ingestion of the information extracted from the XML and the actual
datafiles into the database.

Icat.lite.saxon: Saxon is abandoned from the use in the system because it relies on some
commercial components which are not available in the free Saxon parser.

Utils: some database utilities for accessing the database. GetMyStudy.java is a java
program for getting studies out of the database.

ICAT LITE WS: a partial implementation of a Web Services Interface to icatlite.
Icatlite-web: this is the Web interface for presenting the information from the database.

It is a bunch of PHP files with some css, javascript (not really much at all).

40

http://sourceforge.net/projects/icatlite/
http://icatlite.svn.sourceforge.net/viewvc/icatlite/
http://sourceforge.net/apps/mediawiki/icatlite/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/icatlite/index.php?title=Main_Page

Appendix E:Installation Guide to ICAT-Personal

ICAT-personal consists of two functionalities: data ingestion and data presentation. This
instruction assumes that both functionalities are installed on the same machine. Prerequisite
software for these functionalities are as follows.

ICAT-p Ingestion (ingesting data into the database):

• Mysql server

• Hibernate

• Java (developed on version 1.6/6)

• Mysql jdbc driver

ICAT-p Web (displaying the ingested data in a web browser, tested with firefox):

• Mysql server

• icatlite database script

• Php (http://php.net/)

• Apache

• Graphviz (http://www.graphviz.org/) AND Image graphviz (a php module)

Instructions for installing graphviz and image graphviz: http://drupal.org/project/

graphviz_filter (official instruction, but ubuntu doesnt seem to have Image Graphviz pack-
age available 08 Oct. 2010) and http://drupal.org/node/883114

Important settings

• Mysql database name: icatlite

• Dump the data from Mysql database: mysqldump u username p icatlite ¿ icatlite.dump
(The file icatlite.dump will be generated in the directory where you run the command)

• Import the data back to mysql database: mysql u username p icatlite ¡ icatlite.dump
(Assume the file icatlite.dump exists in the directory where you run the command)

• If there is a problem: permission denied php cannot write to new file. (Solution: we
need to give apache, i.e. www-data, the permission to all the directories and files) see
http://www.karakas-online.de/forum/viewtopic.php?t=2235

If there are permissions problem, change both user and group to www-data (the defaults
for apache server) in the web server:

chown www-data directory/

chgrp www-data directory/

Step-by-step instructions

• Download the trunk from the svn

41

http://php.net/
http://www.graphviz.org/
http://drupal.org/project/graphviz_filter
http://drupal.org/project/graphviz_filter
http://drupal.org/node/883114
http://www.karakas-online.de/forum/viewtopic.php?t=2235

• Under a directory called ICAT LITE CORE/database, you should find a script: icatlite-
mysql.sql

Set up ICAT-personal demo website.

• Unzip icatlite-web.zip (this is available from the ESC svn under Code/trunk) to an
Apache accessible directory

• Under the directory, you can find the following php files: clickable svg.php html head.php
sections head.php sidebar.php db fns.php html menu.php sections.php sidebar tail.php
demo standalone.php html tail.php sections tail.php study svg backup.php demo website.php
index.php sidebar head.php study svg.php (AND a directory named /web, which holds
css, javascript, and other web page related files.)

• db fns.php: change the mysql database username password in this php

• modify apache httpd.conf so that it can the apache server know how to interpret svg
type

To modify the apache to interpret the SVG type, follow the instructions at http://kaioa.
com/node/45. The following are added to the /etc/apache2/apache2.conf:

<IfModule mime_module>

AddType image/svg+xml .svg

AddType image/svg+xml .svgz

AddEncoding gzip .svgz

<FilesMatch \.svgz$>

<IfModule mod_gzip.c>

mod_gzip_on No

</IfModule>

</FilesMatch>

</IfModule>

42

http://kaioa.com/node/45
http://kaioa.com/node/45

References

[1] S. Bechhofer, D. De Roure, M. Gamble, C. Goble, and I. Buchan. Research Objects:
Towards Exchange and Reuse of Digital Knowledge. In: The Future of the Web for
Collaborative Science (FWCS 2010), April 2010, Raleigh, NC, USA.

[2] Sean Bechhofer, John Ainsworth, Jiten Bhagat, Iain Buchan, Philip Couch, Don Cruick-
shank, David De Roure, Mark Delderfield, Ian Dunlop, Matthew Gamble, Carole Goble,
Danius Michaelides, Paolo Missier, Stuart Owen, David Newman, Shoaib Sufi, Why
Linked Data is Not Enough for Scientists, pp. 300-307, 6th IEEE International Confer-
ence on e-Science, 2010

[3] Mark Borkum, Carl Lagoze, Jeremy Frey, and Simon Coles. A Semantic eScience Plat-
form for Chemistry, pp.316-323, 6th IEEE International Conference on e-Science, 2010

[4] Simon J. Coles, Jeremy G. Frey, Michel B. Hursthouse, Mark E. Light, Andrew J. Mil-
sted, Leslie A. Carr, David DeRoure, Christopher J. Gutteridge, Hugo R. Mills, Ken E.
Meacham, Michael Surridge, Elizabeth Lyon, Rachel Heery, Monica Duke, and Michael
Day, An E-Science Environment for Service Crystallography - from Submission to Dis-
semination, J. Chem. Inf. Model., 2006, 46(3), pp.1006 - 1016.

[5] Damian Flannery, Brian Matthews, Tom Griffin, Juan Bicarregui, Michael Gleaves,
Laurent Lerusse, Roger Downing, Alun Ashton, Shoaib Sufi, Glen Drinkwater, Kerstin
Kleese, ICAT: Integrating Data Infrastructure for Facilities Based Science, pp.201-207,
5th IEEE International Conference on e-Science, 2009.

[6] M Folk, A Cheng, K Yates (1999) HDF5: A file format and I/O library for high per-
formance computing applications, Proceedings of Supercomputing’99, ACM SIGARCH
and IEEE, (Portland, OR), Nov. 1999.

[7] Ian T. Foster. The virtual data grid: a new model and architecture for data-intensive
collaboration. In SSDBM 2003: Proceedings of the 15th international conference on Sci-
entific and statistical database management, Washington, DC, USA, 2003.

[8] Boris Glavic and Klaus R. Dittrich. Data Provenance: A Categorization of Existing
Approaches. In Datenbanksysteme in Business, Technologie und Web (BTW 2007), pp.
227 - 241, 2007.

[9] P. Klosowski, M. Koennecke, J. Z. Tischler and R. Osborn, NeXus: A common format
for the exchange of neutron and synchroton data, Physica B: Condensed Matter, Vol
241-243, Dec 1997, pp151-153, Proceedings of the International Conference on Neutron
Scattering.

[10] Brian Matthews, Shoaib Sufi, Damian Flannery, Laurent Lerusse, Tom Griffin, Michael
Gleaves, Kerstin Kleese. Using a Core Scientific Metadata Model in Large-Scale Facilities.
5th International Digital Curation Conference, London, England, 2-4 December 2009.

[11] Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones, Jim Woodcock, Esther
Conway, Towards a Methodology for Software Preservation. 6th International Conference
on Preservation of Digital Objects (iPres 2009), San Francisco, USA, 05-06 Oct 2009.

43

[12] Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones, A Framework for Soft-
ware Preservation, International Journal of Digital Curation, 5 (1), 2010.

[13] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska, S. Miles,
P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, and J. Van den Bussche. The
Open Provenance Model core specification (v1.1). Future Generation Computer Systems,
in Press, 2010.

[14] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Green-
wood, Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat and Peter Li, Taverna:
a tool for the composition and enactment of bioinformatics workflows, Bioinformatics,
Vol. 20(17) 2004, pp3045-3054.

[15] Manjula Patel Requirements Report, I2S2 project report D1.1, July 2010. http://www.
ukoln.ac.uk/projects/I2S2/documents/I2S2-WP1-D1.1-RR-Final-100707.pdf.

[16] Eric F. Pettersen, Thomas D. Goddard, Conrad C. Huang, Gregory S. Couch, Daniel M.
Greenblatt, Elaine C. Meng, Thomas E. Ferrin, UCSF Chimera - A visualization system
for exploratory research and analysis, Journal of Computational Chemistry, 25(13), 1605
- 1612, 2004.

[17] R Rew, G Davis, NetCDF: an interface for scientific data access IEEE Computer Graph-
ics and Applications, 10(4), 76-82, 1990.

[18] Enrico Scalavino, Vaibhav Gowadia, and Emil C. Lupu (2010) A Labelling System for
Derived Data Control, in Sara Foresti and Sushil Jajodia (Eds.) Data and Applications
Security and Privacy XXIV: Proceedings of DBSec 2010, the 24th Annual IFIP WG 11.3
Working Conference, LNCS, Springer-Verlag:Berlin.

[19] Andrew Shepherd (2001) Hierarchical task analysis, Taylor & Francis: London.

[20] Shoaib Sufi and Brian Matthews, A Metadata Model for the Discovery and Exploitation
of Scientific Studies. In Domenico Talia, Angelos Bilas and Marios D. Dikaiakos (Eds.)
Knowledge and Data Management in GRIDs, 2007, pp135-149, Springer: Berlin.

[21] M.G. Tucker, D.A. Keen, M.T. Dove, A.L. Goodwin and Q. Hui. RMCProfile: Reverse
Monte Carlo for polycrystalline materials. Journal of Physics: Condensed Matter 19, art
no 335218 (16 pp), 2007, available at: http://wwwisis2.isis.rl.ac.uk/rmc/.

[22] Erica Yang. Martin Dove’s RMC Workflow Diagram. Project Requirement
Report (supplementary report) for the I2S2 project, July 2010. Available
at: https://www.jiscmail.ac.uk/cgi-bin/filearea.cgi?LMGT1=I2S2&f=

/Deliverables/RequirementsReport.

[23] Erica Yang, Brian Matthews, Michael Wilson, Enhancing the Core Scientific Metadata
Model to Incorporate Derived Data, pp.145-152, 6th IEEE International Conference on
e-Science, 2010

[24] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing,
SIGMOD Rec. 34, 3 (Sep. 2005), pp44-49, 2005.

44

http://www.ukoln.ac.uk/projects/I2S2/documents/I2S2-WP1-D1.1-RR-Final-100707.pdf
http://www.ukoln.ac.uk/projects/I2S2/documents/I2S2-WP1-D1.1-RR-Final-100707.pdf
http://wwwisis2.isis.rl.ac.uk/rmc/
https://www.jiscmail.ac.uk/cgi-bin/filearea.cgi?LMGT1=I2S2&f=/Deliverables/RequirementsReport
https://www.jiscmail.ac.uk/cgi-bin/filearea.cgi?LMGT1=I2S2&f=/Deliverables/RequirementsReport

