

Imperial College London

Image, Shape & Multimedia Resource Discovery

Stefan Rüger Multimedia & Information Systems mmis.doc.ic.ac.uk

Frederic Fol Leymarie Arts Computing doc.gold.ac.uk/~ffl

Outline

Part 1: New paradigms for media access

Part 2: Shape representation

Background: Stefan Rüger

- Trained as theoretical physicist
- PhD in theory of neural networks
- Imperial College London
 - PostDoc in data mining and text mining (1997-1999)
 - EPSRC Advanced Research Fellow (1999-2004)
 - Research Lecturer (2000-2002), Lecturer (2002-2005),
 Reader in Multimedia and Information Systems (2005-2006)
- Professor of Knowledge Media, KMI, the Open University

Background: Frederic F. Leymarie

- Trained as an engineer (electrical and physics)
- PhD in 3D shape theory
- Brown University (USA)
 - Co-founder of the SHAPE Lab. (1999); NSF supported
 - SHAPE Lab manager (2002-2004)
- Professor of Arts Computing, Goldsmiths Digital Studios

Outline

- New Paradigms in Media Access
 - Multimedia Management and Access
 - Semantic gap and Polysemy
 - Content-based visual search
 - Lateral browsing
 - Commercial applications
- Shape representation
 - -2D
 - 2.5D, images, motion
 - -3D

Research: Multimedia Management and Access

What have you got?

Multimedia Management and Access

- Archive
 - text, video, images, speech, music, web content, ...
- Query
 - text, stills, sketch, speech, humming, examples, ...
 - content-based
- Value-added services
 - browsing, summaries, story boards
 - document clustering, cluster summaries
- Putting the user in the loop

New types of Search Engines

text	stills	sketch	speech	punos	humming	motion	query
							text
							video
							images
							speech
							music
							sketches
							multimedia

Example

conventional

text retrievad

get a wildlife

tkeenfleatery

anchgetuble and
gedia newse

Applications

- Medicine
- Personal collections
- Multimedia digital libraries
- Media archives
- Entertainment
- Tourism
- E-learning
- Retail

Outline

- New Paradigms in Media Access
 - Multimedia Management and Access
 - Semantic gap and Polysemy
 - Content-based visual search
 - Lateral browsing
 - Commercial applications
- Shape representation
 - -2D
 - 2.5D, images, motion
 - -3D

The semantic gap

- 120,000 pixels with a particular spatial colour distribution
- 2. faces and a vase-like object
- 3. victory, triumph, ...

Automated image annotation

Automated image annotation as machine learning problem

Training set, e.g., 32,000 images such as

animal, creature, face, grass, nature, outdoors, outside, portrait, teeth, tiger, vertical, water, wild, wildlife

[with Magalhães, CIVR 2006]

[PhD work in progress: A Yavlinsky, Nov 2003-, partly ORS funded]

[PhD work in progress: J Magalhães, Oct 2004-, funded by FCT]

[with Magalhães, book chapter 2006]

[with Magalhães, SIGIR 2005]

[with Yavlinsky and Schofield, CIVR 2005]

[with Yavlinsky, Heesch and Pickering, ICASSP 2004]

Automated image annotation: an example

Automated: water buildings city sunset aerial

Bridging the semantic gap

- Region classification (grass, water, sky, ...) + simple vocabulary
- Infer complex concepts from simple models (barbecue = grass+plates+people), e.g., using ontologies

[collaboration with AT&T Research, Cambridge 2001]

Polysemy

Relevance feedback

- endow system with plasticity (parameters)
- system needs to learn from user
 - = change the parameters

Applet started.

Outline

- New Paradigms in Media Access
 - Multimedia Management and Access
 - Semantic gap and Polysemy
 - Content-based visual search
 - Lateral browsing
 - Commercial applications
- Shape representation
 - -2D
 - 2.5D, images, motion
 - -3D

Content-based Visual Search

```
[book chapter: 2006 to appear]
[Choplin 1.3 open-source software, 3 Q 2006]
[iBase 1.2 open-source software, 3 Q 2006]
[keynote: EU infoday for a call on audio-visual search, 19 Dec 2005]
[invited talks: AMR 2005, National e-Science workshop 2005]
[invited panels: EWIMT 2004, AMR 2005, EWIMT 2005]
[with Howarth, Information Retrieval, submitted 2005]
[with Howarth CIVR 2005]
[with Chawda, Craft, Cairns and Heesch, HCI 2005]
[with Howarth, ECIR 2005]
[with Heesch, Pickering, Howarth and Yavlinsky, JCDL 2004]
[with Yavlinsky, Heesch and Pickering, ICASSP 2004]
[with Howarth, CIVR 2004]
[with Pickering, Computer Vision and Image Understanding, 92(1), 2003]
[with Heesch, Pickering and Yavlinsky, TRECVID 2003]
[with Heesch and Yavlinsky, CIVR 2003]
[with Pickering, Heesch, O'Callaghan and Bull, TREC 2002]
[with Pickering and Sinclair, CIVR 2002]
[with Pickering, TREC 2001]
```

Evaluation conference TRECVID

 TRECVID topic 102: Find shots from behind the pitcher in a baseball game as he throws a ball that the batter swings at

Outline

New Paradigms in Media Access

- Multimedia Management and Access
- Semantic gap and Polysemy
- Content-based visual search
- Lateral browsing
- Commercial applications
- Shape representation
 - -2D
 - 2.5D, images, motion
 - -3D

Putting the user in the look

 Precompute browsable network within media connecting ``similar" stuff

[with Heesch, CIVR 2005] [with Heesch, CIVR 2004] [with Heesch, ECIR 2004]

Nearest neighbours wrt features

Browsing example

 TRECVID topic 102: Find shots from behind the pitcher in a baseball game as he throws a ball that the batter swings at

In your mind

[Alexander May: SET award 2004: best use of IT – **national prize**]

Image ib. 0033 Filename: TRECVID 2003_130/310(130_300_RRF;)pg. Reywords: THE ONDER DOO FIOHTING TO BE RECOONIZED OR THE COMMITMENT THE TIMADE TO EACH OTH.

Image ID: 1263 Collection: Video

Resolution: 352 x 264

Filename: TRECVID2003_138/shot13

8_210_RKF.jpg

Keywords: FOR ONE WIN OVER THE S HARKS IN THE MAJORS THE BRAVES E EAT THE

Temporal My selection

Image ID: 1263 Filename: TRECVID2003_138/shot138_210_RKF.jpg Keywords: FOR ONE WIN OVER THE SHARKS IN THE MAJORS THE BRAVES BEAT THE

Properties

- Exposure of semantic richness
- User decides which image meaning is correct
- Network precomputed -> fast and interactive
- Supports search without query formulation
- 3 degrees of separation (for 32,000 images)
- scale-free, small-world graph

Outline

New Paradigms in Media Access

- Multimedia Management and Access
- Semantic gap and Polysemy
- Content-based visual search
- Lateral browsing
- Commercial applications
- Shape representation
 - -2D
 - -2.5D
 - -3D

Video summary

story-level segmentation

keyframe summary videotext summary named entities

full-text search

[technology being licensed by Imperial Innovations to industry]

[patent application 2004]

[finished PhD project: Pickering, now

at HTB, London]

[with Wong and Pickering, CIVR

2003]

[with Lal, DUC 2002]

[Pickering: best UK CS student project 2000 – **national prize**]

Multimedia Digital Libraries: Edutainment

Digital Shoebox

Personal photo collection

Territory, NZ, USA, Toronto, Reuth

Hong Kong

Jan 2003 HK Polytech, Kowloon, HK Island

Jul 2003 Los

Angeles +

Urbana-

Australia

3 subalbums [332]

Jan-Apr 2003 Sydney; Feb 2003 Canberra; Mar 2003 Yurala

New Zealand

14 subalbums [1016]

Mar 2003 and Dec 2003 - Apr 2004

60 images

Jul 2003 Toronto; May 2004 Montreal

Aug 2003 Dublin

6 subalbums [418]

Champaign; Nov 2003 Washington + and Kansas City; Apr 2004 Hawaii; Jun 2004 Tucson, Arizona

2 subalbums [125]

Marianske Lazne

Aug 2003

Germany

2003/4 Bavaria;

2004 Weimar

Italy

USA

Apr 2003 Pisa; Jun 2004 Pisa and Lucca

1 subalbum [39]

Multimedia Digital Libraries

- Visual, geo-temporal and text access to multimedia collections
- Novel visual browsing and search modes
- Information visualisation
- Collections from BBC, BL, V&A and 2 Unis

Outline

- New Paradigms in Media Access
 - Multimedia Management and Access
 - Semantic gap and Polysemy
 - Content-based visual search
 - Lateral browsing
 - Commercial applications
- Shape representation
 - -2D
 - 2.5D, images, motion
 - -3D

Content-Based Image Retrieval

From "Image search engines: an overview", Gevers & Smeulders, 2003

Color

Shading

Shape

Texture

Motion

Shape as a Representation / Unification

From "On the Role of Medial Geometry in Human Vision", Kimia, 2003.

Outline

- New Paradigms in Media Access
 - Multimedia Management and Access
 - Semantic gap and Polysemy
 - Content-based visual search
 - Lateral browsing
 - Commercial applications
- Shape representation
 - 2D
 - 2.5D, images, motion
 - -3D

Medial representations of shape

1- Consider a set of inflatable primitives centered mid-way between 2 or more outline segments and grown to osculate (touch) the object on these segments.

Special case: maximal contact spheres.

Medial loci: let the outline "propagate" (i.e., continuously deform) until it self-intersects.

Special case: Euclidean wave propagation (optics).

Medial representations of shape

The Medial Axis Transform: 1st singular solutions of the Eikonal equation of geometric optics [Blum].

$$\sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_i} \right)^2 = 1.$$

From Gert van Tonder's website:

3D cellular automata simulation by Leymarie and Kimia:

Medial Axis representation of shape

Quantitative descriptions: encode the varying width of objects via the radius function (of contact spheres).

Qualitative descriptions: *e.g.*, branching structures of elongated objects.

Shape **features**: make explicit corners, bumps, surface ridges (sharp or smooth).

Completeness: exact reconstruction possible.

Built-in **hierarchy** of scales: mix of spatial and width properties.

Shape **dynamics**: modeling of deformations, kinematics (including animation, motion), genesis (growth).

2D graph "regularization"

- Transition removal, i.e., remove topological instability
- 2D Boundary Smoothing ordered by "scale"

Iterative removal of MA branches, ordered by boundary support (*i.e.*, how much of the contour is represented), coupled with local boundary model adjustment, results in corner enhancement and small perturbations' smoothing.

(After Tek and Kimia, 2001)

3D scaffold regularization

Examples: parts, deformation

Examples: parts, deformation

Challenge: How to navigate the "shape-space"

Challenge: How to navigate the "shape-space"

Build metrics on (graph) deformations

Challenge: How to navigate the "shape-space"

Build metrics on (graph) deformations

DB indexing by (2D) shape

1	1	1	1	1	1	1	1	7	1	1	1	_ ,	-	-	<u>_</u>
iā 253	426	427	464	472	473	510	511	522	527	544	553	612	616	625	631
*	3	\$	*	£	ŧ	*	*	*	2	8	*	*	Y	*	V
	398	485	520	527	528	545	558	574	575	591	616	768	768	777	778
Ť	4	X	1	1	×	1	1	Í	1	7	Ĺ	•	<u></u>	_	±
	449	457	477	517	519	521	531	536	562	587	600	619	647	658	658
	*	4	*	*	*		**	4	*	*	1	4	1		1
	705	706	715	721	725	752	760			800	803	814	814	820	824
T.	•	1	1	1	1	1	1	*		1	3	7	M	*	×
	584	614				663				736	768	771	808	817	823
*	→	*	>	>_	<u>-</u>	™	→	1	—	¥	7	1	-	_,	_
	303	319	320	323	354	360	363	369	377	380	382	604	609	615	620
—	-	_	_	_	_	_	~	4	~	4	7	1	1	1	1
	186	188	213	277	313	335	338	406	456	477	492	528	557	557	560
•	•		•		•	•	•	•		•	T	V	•	T	Y
	519	530	554	599	610	630	651	665	682	692	702	732	745	760	766
1	•	-		À	M	P	-	7	-	*		-	X	T	*
8	537	546	558	565	568	592	622	623	635	647	656	667	676	678	693

After Sebastian, Kimia, et al., IEEE-PAMI, 2004.

Outline

- New Paradigms in Media Access
 - Multimedia Management and Access
 - Semantic gap and Polysemy
 - Content-based visual search
 - Lateral browsing
 - Commercial applications
- Shape representation
 - -2D
 - 2.5D, images, motion
 - -3D

DB indexing by ("2.5D") shape

After Kimia, et al., 2000.

Examples: multiple views, animation

Image grouping / segmentation

Figure 12.15. Using the edge map associated with an image, visual fragments are defined and are used as canonical elements for perceptual grouping Tamrakar and Kimia (2004).

After Kimia et al., 2004.

Image grouping / segmentation

Shape as a Representation / Unification

From "On the Role of Medial Geometry in Human Vision", Kimia, 2003

Animation by Charles Lucassen, after Muybridge (1887)

From "Capturing time", Ilona Kovacks, 2006

Chronophotographs, Marey, 1884, College de France

From "Capturing time", Ilona Kovacks, 2006

Marey, 1883, College de France

From "Capturing time", Ilona Kovacks, 2006

human contrast sensitivity

neuronal responses in monkey occipital cortex

From "Capturing time", Ilona Kovacks, 2006

Outline

- New Paradigms in Media Access
 - Multimedia Management and Access
 - Semantic gap and Polysemy
 - Content-based visual search
 - Lateral browsing
 - Commercial applications
- Shape representation
 - -2D
 - 2.5D, images, motion
 - **3D**

3D

www.doc.gold.ac.uk/morpholingua/

Leymarie-Kimia: Keep only **singular** points of the flow (radius) to build a **graph** (2001).

Mangin et al., 2004; Cortical folds' recognition.

3D: Towards Object Recognition

3D: Towards Object Recognition

Visual Search in large 3D DB

Graph matching via graduated assignement (presented at 3DPVT, Greece, Sept. 2004, Chang, Leymarie & Kimia) a solution to the **Global Registration** problem.

Digital Michelangelo Stanford, Firenze, NRC

Challenge: robust automatic extraction of graphs, dealing with topological instabilities/events.

Outline

- New Paradigms in Media Access
 - Multimedia Management and Access
 - Semantic gap and Polysemy
 - Content-based visual search
 - Lateral browsing
 - Commercial applications
- Shape representation
 - -2D
 - 2.5D, images, motion
 - -3D
 - What next ...?

Visual Search in large 2D DB

Challenge: robust automatic extraction of graphs, dealing with topological instabilities/events.

Can the shape representation lead to functional descriptors and help in automatically creating meta-data?

4227_03.tif

Imperial College London

Image, Shape & Multimedia Resource Discovery

Stefan Rüger Multimedia & Information Systems mmis.doc.ic.ac.uk

Frederic Fol Leymarie
Arts Computing
doc.gold.ac.uk/~ffl